Invariant subspaces of clustering operators. II
نویسندگان
چکیده
منابع مشابه
Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملInvariant Subspaces for Algebras of Subnormal Operators. Ii
We continue our study of hyperinvariant subspaces for rationally cyclic subnormal operators. We establish a connection between hyperinvariant subspaces and weak-star continuous point evaluations on the commutant. Introduction. Let A be a compact subset of the complex plane C and let R(K) denote the algebra of rational functions with poles off K. For a positive measure p with support in K let R2...
متن کاملInvariant subspaces of abstract multiplication operators
INVARIANT SUBSPACES OF ABSTRACT MULTIPLICATION OPERATORS by Hermann Flaschka We describe a class of operators on a Banach space ft whose members behave, in a sense, like multiplication operators, and consequently leave invariant a proper closed subspace of IB. One of the sufficient conditions for an operator to be such an "abstract multiplication" bears a striking resemblence to an assumption m...
متن کاملSelfadjoint time operators and invariant subspaces
For classical dynamical systems time operators are introduced as selfadjoint operators satisfying the so called weak Weyl relation (WWR) with the unitary groups of time evolution. Dynamical systems with time operators are intrinsically irreversible because they admit Lyapounov operators as functions of the time operator. For quantum systems selfadjoint time operators are defined in the same way...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1981
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf02099917